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Contraction of a filament of an incompressible Newtonian liquid in a passive ambient
fluid is studied computationally to provide insights into the dynamics of satellite drops
created during drop formation. This free boundary problem, which is composed of the
Navier–Stokes system and the associated initial and boundary conditions that govern
the evolution in time of the filament shape and the velocity and pressure fields within
it, is solved by the method of lines incorporating the finite element method for spatial
discretization. The finite element algorithm developed here utilizes an adaptive elliptic
mesh generation technique that is capable of tracking the dynamics of the filament
up to the incipience of pinch-off without the use of remeshing. The correctness of the
algorithm is verified by demonstrating that its predictions accord with (a) previously
published results of Basaran (1992) on the analysis of finite-amplitude oscillations
of viscous drops, (b) simulations of the dynamics of contracting filaments carried
out with the well-benchmarked algorithm of Wilkes et al. (1999), and (c) scaling
laws governing interface rupture and transitions that can occur from one scaling law
to another as pinch-off is approached. In dimensionless form, just two parameters
govern the problem: the dimensionless half-length Lo and the Ohnesorge number Oh
which measures the relative importance of viscous force to capillary force. Regions
of the parameter space are identified where filaments (a) contract to a sphere without
breaking into multiple droplets, (b) break via the so-called endpinching mechanism
where daughter drops pinch-off from the ends of the main filament, and (c) break
after undergoing a series of complex oscillations. Predictions made with the new
algorithm are also compared to those made with a model based on the slender-
jet approximation. A region of the parameter space is found where the slender-jet
approximation fares poorly, and its cause is elucidated by examination of the vorticity
dynamics and flow fields within contracting filaments.

1. Introduction
Many industrial processes such as gene chip arraying (Schena et al. 1998), inkjet

printing (Döring 1982) and catalyst production (Shah, Kevrekidis & Benziger 1999)
rely on the formation of drops of liquid from a nozzle in air. In nearly all applications
involving drop formation, a uniform drop size distribution is desired. However, such
a distribution is commonly prohibited by the presence of small secondary or satellite
drops, which are hereafter referred to as satellites, that are remnants of the drop
pinch-off process. Shortly before the primary drop pinches off, a thin thread of liquid
connects the forming drop to the liquid remaining in the nozzle. Under some operating
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conditions, the thread pinches at both ends before it can be absorbed into either the
primary drop or the liquid in the nozzle and thus forms a satellite (Zhang & Basaran
1995). In situations where one cannot prevent the formation of satellites, one would
like to know whether the satellites will, in time, break up into multiple subsatellites
and if so what will be the relative sizes of the subsatellites. A goal of this paper
is to provide insights into this problem through the study of the dynamics of the
prototypical satellite – a free liquid filament whose initial shape is that of a cylinder
with hemispherical caps at both of its ends (see, e.g., Schulkes 1996).

Several researchers have investigated the problem of drop formation experimentally.
For more than 50 years, the pioneering studies of Hauser et al. (1936) and Edgerton,
Hauser & Tucker (1937) have remained among the most illuminating observations of
drops and their satellites during drop formation from a nozzle. These authors used a
high-speed motion camera at rates up to 1200 frames per second (f.p.s.) to visualize
both primary drops and satellites in their study of the drop weight method for
surface tension measurement. These authors were primarily interested in determining
the number of satellites that form and hence did not focus their observations onto the
dynamics of individual satellite drops. Moreover, the frame rates that they were able to
achieve, while remarkable in that era, were insufficient for monitoring in detail the
time evolution of a single satellite. More than 50 years later, Peregrine, Shoker &
Symon (1990) reinvigorated the subjects of drop formation and interface rupture
with their photographs of the dynamics shortly before and after the pinch-off of
both the primary drops and satellites for water dripping from a capillary (see also
Goedde & Yuen 1970; Kowalewski 1996, for related studies of satellite dynamics
occurring during breakup of a liquid jet). However, Peregrine et al. (1990) only
reported the shapes of satellites during the early stages of their evolution. Furthermore,
pictures depicting the time evolution of the dynamics reported by these authors were
not of the same drop but were of different drops at different stages of their dynamics.
Consequently, they were only able to estimate the relative times of their photographs.

Zhang & Basaran (1995) used high-speed visualization to study the effects of
physical properties, flow rate, tube radius, tube wall thickness and the presence
of surfactants on the primary drop volume, limiting drop length at breakup, and
the fate of satellites for drops of glycerol/water solutions forming from a capillary
tube. However, they were not able to study the details of the satellite dynamics due
to the insufficient time resolution of their imaging system. Shi, Brenner & Nagel
(1994) uncovered the fascinating effect of increasing drop viscosity on the shape
of a drop near the point of pinch-off. These authors showed that for concentrated
glycerol/water solutions, a microthread, or possibly a series of microthreads such
that each succeeding microthread was significantly thinner than the one from which
it was spawned, could form where the main thread connects to the about-to-form
primary drop. Henderson, Pritchard & Smolka (1997) experimentally studied both
the pinch-off of the primary drop from the main thread and the pinch-off of the
main thread from the fluid pendant from the capillary tube for highly viscous liquids.
These authors noted that while one or more microthreads form where the main thread
connects to the primary drop, no microthreads form where the main thread connects
to the fluid in the capillary. Henderson et al. (1997) also compared the recoil speed
of the main filament after it separated from either the primary drop or from the fluid
in the capillary to that predicted by scaling analysis.

Brenner et al. (1997) studied the breakup of water drops and focused primarily
on the dynamics for times approaching and after breakup. Although these authors
studied the formation of satellites, they only focused on the early stages of the
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satellite’s dynamics. Recently, Notz, Chen & Basaran (2001) utilized an ultra-high-
speed imaging system to uncover the surprising dynamics of a satellite formed during
the pinch-off of a water drop from a tube. These authors also illustrated the breakup
and re-coalescence of a subsatellite with the satellite. Rothert, Richter & Rehbert
(2001) and Chen, Notz & Basaran (2002) showed experimentally the change of
scaling from one scaling regime to another (cf. Lister & Stone 1998) as pinch-off
nears. Robinson & Steen (2001) and Chen et al. (2002) further showed experimentally
that a fluid interface can overturn prior to pinch-off even in the presence of finite
viscosity by demonstrating its occurrence during breakup of a bridge of a soap film
and that of a drop, respectively.

The problem of drop formation has also been the subject of numerous theoretical
studies. Schulkes (1994) used the boundary element method (BEM) to solve for the
potential flow inside a growing drop to theoretically predict the dynamics of formation
and breakup of drops of an inviscid liquid from a capillary. Among other things,
Schulkes (1994) showed that the interface of the primary drop at the incipience of
breakup is overturned near the pinch-point. Eggers & Dupont (1994) studied the
breakup of liquid drops by solving the one-dimensional slender-jet equations (Eggers
1993). These authors also investigated the asymptotic behaviour of interfacial rupture
for low-viscosity fluids and contrasted their results with those for an inviscid fluid.
Shi et al. (1994) solved the one-dimensional equations to predict the cascade of
microthreads that form for concentrated glycerol/water solutions shortly before the
primary drop detaches from the main thread. These authors showed that while one
microthread forms naturally, an external source of noise is necessary to trigger the
formation of subsequent microthreads. Brenner et al. (1997) studied the formation
and pinch-off of low viscosity drops by solving the one-dimensional equations. These
authors paid particular attention to the dynamics shortly before and after the point
of rupture. Zhang & Stone (1997) used the BEM to theoretically study the formation
of drops in Stokes flow into a viscous ambient fluid also undergoing Stokes flow.
Among other things, these authors illustrated that the length of the drops at breakup
increases significantly while the primary drop volume varies only slightly as the ratio
of the drop’s viscosity to the external fluid’s viscosity increases.

Wilkes, Phillips & Basaran (1999) studied the formation and pinch-off of Newtonian
liquid drops from a tube using a three-dimensional axisymmetric or two-dimensional
algorithm employing the Galerkin finite element method (G/FEM). These authors
demonstrated the high-accuracy of their computations by showing that their computed
results (i) agreed with new and old experimental measurements within an error
of about a percent and (ii) were in excellent agreement with results obtained
with an inviscid code when viscous force was small compared to inertial force.
These authors further showed for the first time that the interface of a drop of a
liquid of finite viscosity can overturn prior to breakup (cf. Chen et al. 2002). Before
this work, interface overturning prior to pinch-off had been thought to occur only
in the absence of viscosity as the phenomenon had only been observed in inviscid
flows (Mansour & Lundgren 1990; Schulkes 1993, 1994; Chen & Steen 1997; Day,
Hinch & Lister 1998).

Recently, Zhang (1999) used the volume-of-fluid (VOF) method to predict the
formation of several drops of liquid in sequence into air. Among his findings, Zhang
reported a correlation for the critical flow rate above which satellites do not form as
a function of fluid properties. Gueyffier et al. (1999) used a fully three-dimensional
VOF algorithm to predict the dynamics of drop formation including the dynamics and
formation of satellites. However, the calculations by both Zhang (1999) and Gueyffier
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et al. (1999) for the drop shape at the incipience of breakup and subsequent satellite
dynamics were too coarse and hence did not capture well the fine details of existing
experimental observations (Zhang & Basaran 1995; Notz et al. 2001). By contrast,
using a finite element algorithm, Chen et al. (2002) showed a change of scaling from
one scaling regime to another (cf. Lister & Stone 1998) as pinch-off nears. Chen et al.
(2002) further showed for the first time that the computed value of the minimum neck
radius of a forming drop follows Eggers’s (1993) so-called universal solution until it
becomes unstable. Ambravaneswaran, Wilkes & Basaran (2002) recently compared
the predictions of drop formation based on the one-dimensional equations with those
based on the full three-dimensional axisymmetric Navier–Stokes equations in order
to determine the accuracy of the one-dimensional method under different operating
conditions. As part of the same study, these authors used the one-dimensional method
to show that if the fluid and tube radius are fixed but the flow rate is varied,
there exists a critical flow rate beyond which satellites no longer form. Fuchikami,
Ishioka & Kiyono (1999) and Ambravaneswaran, Phillips & Basaran (2000) have
also used the one-dimensional equations and experiments to explore the dynamics
of the so-called leaky faucet problem and thereby determined computationally and
verified experimentally in some situations a number of interesting nonlinear dynamical
phenomena including period doubling, hysteresis and chaotic dripping.

Compared to the number of theoretical studies aimed at understanding the
dynamics of the formation and pinch-off of drops from a tube, relatively few studies
have focused on satellite dynamics to the same level of detail. Schulkes (1996) studied
the contraction of liquid filaments in air at finite Reynolds number using the G/FEM.
Schulkes took the initial drop shape to be that of a cylinder terminated at both ends by
identical hemispherical caps and the fluid to be initially quiescent. Unfortunately, his
calculations failed to converge before the interface overturned and/or the minimum
radius of the thread was about 80% of the initial thread radius. Notz et al. (2001) used
the G/FEM to predict the recoil dynamics of an initially quiescent, carrot-shaped
filament of liquid in air and showed that this simple prototype satellite exhibits
dynamics which closely resemble those of real satellite drops. Furthermore, these
authors demonstrated the accuracy of their algorithm by predicting the transition
from one scaling law governing interface rupture to another.

In a series of papers, Stone and coworkers (Stone, Bentley & Leal 1986; Stone &
Leal 1989; Tjahjadi, Stone & Ottino 1992) studied the breakup of viscous filaments in
a viscous surrounding liquid both theoretically, using the BEM, and experimentally.
In these works, initially spherical drops of radius a were stretched using an externally
applied steady linear flow. These authors studied two situations. In the first, the drops
were stretched to a length L, the external flow was stopped, and the drops were
allowed to contract under the action of surface tension. In the second situation, the
external flow remained on and the filaments were stretched until they broke into two
or more drops. In these studies, the main parameters governing the dynamics were
the viscosity ratio λ= µ̂/µ, where µ̂ and µ are the viscosity of the droplet and the
external fluid, and the capillary number Ca = µGa/γ , where G is the applied shear
rate and γ is the interfacial tension. In all of these studies, the Reynolds number
Re= ρGa2/µ, where ρ is the density of the external fluid, was vanishingly small so
these analyses only apply in the Stokes flow or the creeping flow limit.

Of particular interest here are Stone and coworkers’ results for situations in which
the drop underwent breakup during the relaxation portion of the flow, namely after
the external flow was stopped. Among other things, these authors determined the
critical dimensionless stretching length Lc/a as a function of λ below which the drops
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tended to a sphere at long times and above which the drops broke up into one or more
satellites as they contracted. It was shown that Lc/a has a minimum near λ≈ 1. For
λ> O (1) (λ< O (1)), the drops must be stretched to larger L/a to produce breakup
because more time is required for the bulbous ends to form and pinch-off to occur
due to the stabilizing influence of the viscosity of the inner (outer) fluid.

When a liquid drop or a filament ruptures, the shapes of the interfaces on either
side of the pinch point are locally cones (Eggers 1997). Similarly, when a liquid sheet
breaks, two wedges of liquid result. In a pioneering study, Keller & Miksis (1983)
analysed the recoil of a wedge of an inviscid fluid undergoing irrotational flow. These
authors thereby deduced that the ensuing motion is self-similar, with length scales
varying as the 2/3 power of time measured from the start of the recoiling. More
recently, Billingham (1999) studied theoretically the recoil of both a wedge and a
cone accounting for viscous effects. Since both experiment and theory (Eggers 1997;
Notz et al. 2001) show that in many cases the retracting edge of filaments, wedges,
and cones roll up, Keller, King & Ting (1995) carried out an asymptotic analysis to
determine the shape of and the flow within an inviscid blob undergoing irrotational
flow. Asymptotic expansions valid within the blob could then be matched to ones
valid within the rest of a sheet or filament.

Therefore, a comprehensive theoretical understanding of the dynamics of the
contraction and breakup of highly stretched liquid filaments in a dynamically inactive
ambient fluid, e.g. air, is lacking. Remedying this situation is a major goal of this
paper. The remainder of the paper is organized as follows. Section 2 defines in
detail the problem under investigation. This section also presents the equations, initial
conditions, and boundary conditions that govern the problem. Section 3 describes the
numerical algorithm developed to solve the governing equations. Section 4 presents
the results of the study. Conclusions and future goals are the subjects of § 5.

2. Problem statement and governing equations
The system is a drop of an isothermal incompressible Newtonian liquid with

constant viscosity µ, density ρ and surface tension γ , hereafter called a filament, that
is surrounded by a dynamically inactive ambient fluid. Experiments on drop formation
from capillaries (Hauser et al. 1936; Peregrine et al. 1990; Zhang & Basaran 1995;
Brenner et al. 1997; Henderson et al. 1997) and jet breakup (Goedde & Yuen 1970;
Kowalewski 1996) have shown that when satellites form, their initial shapes are nearly
symmetrical filaments about their equatorial midplanes for high-viscosity liquids but
are asymmetrical and cone-like for low-viscosity liquids. However, if a solid surface
on which a liquid drop is placed is oscillated to eject a portion of the drop (Wilkes &
Basaran 2001; James et al. 2003) or drops are generated from a drop-on-demand inkjet
nozzle (Döring 1982; Chen & Basaran 2002), symmetrical filaments can be produced
for liquids of arbitrary viscosity. Thus, following Schulkes (1996), the initial shape of
the filament is taken to be that of an axisymmetric cylinder that is terminated by
hemispherical caps at both ends and the fluid within the filament is initially taken to
be at rest, i.e. the fluid velocity ṽ = 0 at time t̃ = 0. The initial shape has a dimensional
half-length of L̃o and radius R and the hemispherical caps at both ends have radii
R. Figure 1 schematically illustrates the initial state of the filament. Here, (r̃ , θ, z̃) are
the dimensional radial, azimuthal and axial coordinates of a cylindrical coordinate
system which is based at the centre of mass of the filament and, unless otherwise
indicated, n and t are the unit outward-normal and tangent vectors to the filament
surface.
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Figure 1. Definition sketch for a contracting filament.

Here and in what follows, all variables are non-dimensionalized using the length

scale �c =R and the capillary time scale tc =
√

ρR3/γ , and quantities denoted with a
tilde are the dimensional counterparts of those without. The dynamics of the filament
are governed by the dimensionless Navier–Stokes and continuity equations

∂v

∂t
+ v · ∇v = Oh∇ · T, (2.1a)

∇ · v = 0. (2.1b)

Here T= −pI+ ∇v + (∇v)T , where p is pressure, T is the Newtonian stress tensor and
the Ohnesorge number, Oh =µ/

√
ρRγ , measures the relative importance of viscous

force to surface tension force. When the characteristic velocity is taken to be vc = �c/tc,
Oh can be interpreted as the reciprocal of the Reynolds number, namely Re ≡ Oh−1.

Because the filament is axisymmetric about the z-axis, r = 0, and its shape is taken
to remain symmetric about the equatorial midplane, z = 0, the following boundary
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conditions apply along the axis of symmetry r =0 and the plane z = 0:

n · T · t = 0, (2.2a)

n · v = 0, (2.2b)

where n and t stand for the unit normal and tangent vectors to those boundaries.
Along the free surface, the shear stress equals zero and the normal stress is
proportional to the curvature. Furthermore, the free surface moves according to
the kinematic boundary condition. These two conditions are of course the traction
and the kinematic boundary conditions:

n · T =
1

Oh
2Hn, (2.3a)

n · v = n · ẋs . (2.3b)

Here, −H is the mean curvature of the interface and ẋs denotes the velocity of points
on the free surface located by the position vector xs .

The dynamics is governed by just two dimensionless groups: the dimensionless
initial aspect ratio Lo = L̃o/R and the Ohnesorge number Oh. The drop volume
V = Ṽ /R3 is given simply by

V = 2π
(
Lo − 1

3

)
. (2.4)

In lieu of the non-dimensionalization given above one could choose as the
characteristic length scale the radius a of a sphere with the same volume as the
filament. In this alternative formulation the dimensionless groups are Oh∗ = µ/(ργ a)1/2

and either R/a or L∗
o = L̃o/a. If one chooses Oh∗ and R/a, L∗

o is then given by

L∗
o =

2/3

(R/a)2
+

1

3

(
R

a

)
. (2.5)

Conversely, if one chooses to use Oh∗ and L∗
o, R/a must then be found by solving the

cubic equation (
R

a

)3

− 3L∗
o

(
R

a

)2

+ 2 = 0. (2.6)

Either way, with the choice of a as the characteristic length scale, all filaments
enclose the same volume, V ∗ = Ṽ /a3 = 4π/3. However, Lo = L̃o/R is the true initial
aspect ratio of the filament whereas R/a and L̃o/a are physically less meaningful by
themselves. Moreover, the length scale R properly characterizes the curvature of the
filament’s tips which, in turn, characterizes the driving force of the flow within the
contracting filament.

Naturally, the two choices for non-dimensionalization are related. It is straight-
forward to show that

a

R
=

(
3
2
Lo − 1

2

)1/3
(2.7)

and

Oh = Oh∗
√

a

R
. (2.8)
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3. Finite element analysis
Equations (2.1) subject to boundary conditions (2.2) and (2.3) and initial conditions

stated in § 2 are solved using the method of lines with the Galerkin/finite element
method (Strang & Fix 1973) for spatial discretization and an adaptive finite difference
method (Gresho, Lee & Sani 1980) for time integration. Mixed interpolation
(Huyakorn et al. 1978) is used in representing the velocity and the pressure such
that the velocity components are expanded in a set of C0 biquadratic basis functions
and the pressure is expanded in a set of C0 bilinear basis functions (see e.g. Wilkes
et al. 1999). With these expansions in place, weighted residuals of the governing
equations are formed by using the finite element basis functions as weighting
functions and integrating the residual equations over the entire domain A. In order
to carry out the integrations of the weighted residual, or weak, form of the governing
equations, the domain is first subdivided into a discrete set of smaller subdomains, or
elements, referred to as the mesh. Integrations are performed element-by-element by
mapping each element from the physical domain onto the standard unit square in the
computational domain (Strang & Fix 1973) where they are carried out numerically by
Gaussian quadrature. In the following section, the domain discretization method used
here is described. In § 3.2 other key aspects of the numerical algorithm, including the
method of time integration and an iterative method for solving the resulting system
of nonlinear algebraic equations, are outlined. Finally, several tests that verify the
accuracy of the current algorithm are presented in § 3.3.

3.1. Elliptic mesh generation

For problems involving moving boundaries, the mesh must be able to move and
deform. Numerous methods have been developed to enable finite element meshes
to deform automatically, including the method of spines (Kistler & Scriven 1983,
1994), pseudo-solid domain deformation (Sackinger, Schunk & Rao 1996), arbitrary
Lagrangian–Eulerian (ALE) methods (Hughes, Liu & Zimmermann 1981) and elliptic
mesh generation (Ryskin & Leal 1983; Brackbill 1993).

In this paper, the elliptic mesh generation method developed by Christodoulou &
Scriven (1992) is used. Their method consists of constructing a weighted combination
of functionals which impose orthogonality of coordinate lines, smoothness of
coordinate lines and a controlled distribution of elements (see e.g. Knupp & Steinberg
1993). Weighted residuals of the mesh equations are used to determine the unknown
mesh point coordinates (ri, zi), i = 1, . . . , N , where N is the number of mesh points,
and are solved simultaneously with the governing physical equations for the velocity
and pressure unknowns.

The mesh coordinate unknowns (ri, zi), like the velocity and pressure unknowns,
are expanded using a set of finite element basis functions φi . For the sake of
computational efficiency, the coordinates r and z are mapped onto the unit square in
the computational domain with coordinates {(ξ, η) : 0 � ξ, η � 1} using subparametric
mapping, as described by Christodoulou & Scriven (1992) (see, also, Bathe 1982).
Specifically, r and z are everywhere expanded using bilinear basis functions except
along the free surface where 5-node basis functions with an extra node along the
boundary are used to increase the accuracy of representing the curved shape of the
filament.

A prerequisite for using the elliptic mesh generation technique is that the domain
be divided into a number of quadrilateral subdomains, as illustrated in figure 2(a),
with local coordinates (ξj , ηj ), where j = 1, 2, . . . , is the index of the subdomain. Since
all integrations are performed upon mapping each element onto the computational
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Figure 2. Three steps in generating a mesh for the initial filament shape: (a) the domain is
subdivided into three quadrilateral regions or subdomains, (b) an algebraic mesh is constructed
as an initial guess for the solution of the mesh equations, and (c) the mesh equations are solved
to give the elliptic mesh solution.

domain with coordinates ξ and η, the mesh equations are written in what follows
with respect to the (ξ, η) domain. The Galerkin weighted residuals of the pair of
partial differential equations used to determine the unknown mesh coordinates (ri, zi)
are (Christodoulou & Scriven 1992; Notz et al. 2001)

Ri
ξ =

∫
A

[√
r2
ξ + z2

ξ

r2
η + z2

η

+ εs

]
∇ξ · ∇φi |J | dξ dη − εξ

∫
A

f (ξ ) ln
(
r2
ξ + z2

ξ

)
φi

ξ dξ dη

− Mξ

∫
∂A

f (ξ ) ln
(
r2
ξ + z2

ξ

)
φi

ξ dξ = 0, i = 1, . . . , N, (3.1a)

Ri
η =

∫
A

[√
r2
η + z2

η

r2
ξ + z2

ξ

+ εs

]
∇η · ∇φi |J | dξ dη − εη

∫
A

g(η) ln
(
r2
η + z2

η

)
φi

η dξ dη

− Mη

∫
∂A

g(η) ln
(
r2
η + z2

η

)
φi

η dη = 0, i = 1, . . . , N. (3.1b)

In (3.1), J is the determinant of the Jacobian of the transformation from the physical
domain to the computational domain and ∂A is the boundary of the domain A.
Simply put, (3.1a) and (3.1b) determine a set of curves of constant ξ and constant η

that intersect at the mesh points. In (3.1), the parameter εs controls the smoothness
of the mesh, i.e. of the curves of constant ξ and constant η, and is typically assigned
a value that is O (0.1). The parameters εξ and εη control the concentration of the
interior nodes and their values are typically O (0.01)–O (1). The remaining parameters,
Mξ and Mη, are used to control the concentration of mesh points on the boundaries of
the subdomains. Choosing Mξ or Mη to be small, or zero, results in mesh coordinate
curves that are nearly orthogonal to a boundary. By contrast, large values of Mξ

or Mη, i.e. of O(103) or larger, cause the mesh to be distributed along a boundary
according to the functions f (ξ ) and g(η). The functions f (ξ ) and g(η) are designed to
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Figure 3. An example mesh when Oh=10−2 and Lo = 15 at t =10.990. The top inset shows
a closeup of the filament tip where the vertices of the three subdomains meet and the bottom
inset shows a closeup of the neck region.

cause the mesh to concentrate (dilute) in the ξ - or η-directions where f (ξ ) or g(η) are
small (large). While these functions are beneficial for concentrating the mesh where
desired, a poor choice of either f (ξ ) or g(η) may lead to acute angles where the mesh
coordinate curves intersect each other and the boundaries. Setting Mξ or Mη to zero,
however, can result in an undesirable mesh concentration along a boundary. Hence,
the optimal choice for the mesh parameters and the functions f (ξ ) and g(η) must be
determined through experimentation.

In this paper, the mesh is concentrated axially where the filament necks and it is
distributed nearly uniformly in the radial direction.

Once the domain has been subdivided into quadrilateral subdomains, as shown in
figure 2(a), an algebraic mesh as shown in figure 2(b) is generated as an initial guess
for the solution of the mesh equations. In order to solve the mesh equations over the
entire domain, the subdomains are patched together through the boundary conditions
on (3.1) (see Christodoulou & Scriven 1992; Notz et al. 2001). Along the external
boundaries of the domain, physical conditions replace one of the mesh equations in
order to determine the location of that boundary in physical space. The condition
r = 0 is used in place of (3.1a) in subdomains 1 and 2 along the symmetry axis. The
condition z = 0 is used in place of (3.1b) in subdomain 1 and (3.1a) in subdomain 3
along the mid-plane of symmetry. The kinematic boundary condition (2.3b) is used in
lieu of (3.1b) in subdomains 2 and 3 along the free surface except when determining
the initial mesh. At time t = 0, the analytic description of the initial filament shape is
used for this purpose. The mesh equations are then solved to determine the locations
of the mesh points, as shown in figure 2(c). An example mesh when Oh = 10−2 and
Lo = 15 at time t = 10.990 is shown in figure 3 (cf. figure 10 below).
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As shown in figure 2, the number of elements deployed in meshes used in this
work can be characterized by three independent parameters. Here NZ denotes the
number of elements used in the η1- and ξ3-directions, NR1 denotes the number of
elements used in the ξ1- and ξ2-directions, and NR2 denotes the number of elements
used in the η2- and η3-directions. Moreover, NR1 ≈ NR2 and their sum is defined
as NR = NR1 + NR2. While NZ � NR, determination of appropriate values of these
parameters requires systematic mesh refinement studies. This is a point that is returned
to in § 3.3.

3.2. Time integration and solution method

Once the problem is discretized spatially with G/FEM, the result is a coupled
system of nonlinear time-dependent differential-algebraic equations. This system of
equations is integrated in time using an adaptive predictor–corrector method. The
time derivatives at each step are calculated by either a first-order backward difference
or a second-order trapezoid rule. Initially, eight backward difference steps are taken
with a fixed step size to provide the necessary smoothing of the unphysical transients
created by the inconsistent initial conditions (Luskin & Rannacher 1982; Brenan,
Campbell & Petzold 1996). Thereafter, the trapezoid rule is used with time step
size chosen to control time integration error (Gresho et al. 1980). Specifically, the
step size is chosen by requiring the norm of the time truncation error at the next
time step to be equal to a prescribed tolerance, typically 10−3. A first-order forward
difference predictor is used with the backward difference corrector and a second-order
Adams–Bashforth predictor is used with the trapezoid rule corrector.

A system of nonlinear algebraic equations results after the spatial and time
derivatives are discretized as just described. This system is solved using a fully
coupled Newton’s method with an analytically computed Jacobian. The system of
algebraic equations resulting at each Newton iteration is solved using the frontal
solver of Hood (1976) as modified and improved upon by Silliman (1979), Walters
(1980), Coyle (1984), and Kheshgi & Scriven (1983). Newton iterations are continued
until the L2 norm of both the vector of residuals and the vector of updates falls below
10−6. The correctness of the Jacobian is demonstrated by the quadratic convergence
of Newton’s method.

The algorithm is programmed in Fortran and is executed in serial on an IBM SP
supercomputer consisting of WinterHawk-II 375 MHz Power3-II and WinterHawk
200 Mhz Power3 nodes. Convergence of the solution at each time step typically
requires three to four Newton iterations.

3.3. Accuracy checks and algorithm verification

In order to determine an optimal mesh for a given Lo and Oh, the parameters NR
and NZ must be independently varied until the computed solutions are insensitive
to further systematic increases in the number of elements or mesh points used in
the calculations. Table 1 summarizes the dimensions of the various meshes tested as
well as the resulting number of degrees of freedom, or unknowns, and the average
CPU time required per Newton iteration. Table 2 summarizes the results of the mesh
sensitivity study for Lo = 15 when Oh = 10−2 and Oh = 10−3. The measures of the
solution used are the dimensionless half-length of the drop at breakup Lb and the
time to breakup tb. Here breakup is said to have occurred when the minimum radius
hmin of the filament falls below 2 × 10−3. Table 2 makes clear that the computed
solutions are virtually invariant for meshes II, III, V and VI. For both Oh = 10−2 and
Oh =10−3 the length at breakup and time to breakup differ by 1% or less between
Mesh II and Meshes III, V, and VI. Therefore, Mesh II is used in analysing the
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Mesh NZ NR NEL NDOF CPU

I 100 10 1025 12260 1.9
II 200 10 2025 24160 3.7

III 300 10 3025 36060 5.5
IV 100 15 1556 18142 3.9
V 200 15 3056 35542 7.7

VI 300 15 4556 52942 11.5

Table 1. Characteristics of and execution times for the trial meshes used. Here, NEL is the
total number of elements, NDOF is the number of degrees of freedom, and CPU refers to the
average number of CPU seconds per Newton iteration.

Oh=10−2 Oh= 10−3

Mesh tb Lb tb Lb

I 11.095 5.921 4.736 11.468
II 11.093 5.917 4.786 11.433

III 11.093 5.916 4.791 11.430
IV 11.096 5.920 4.736 11.468
V 11.092 5.917 4.787 11.433

VI 11.093 5.916 4.787 11.432

Table 2. Sensitivity of calculated solutions to mesh refinement for Lo = 15.

dynamics of the contracting filaments in the remainder of this paper unless otherwise
indicated. One exception to the use of Mesh II is for filaments with initial lengths Lo

exceeding 15 where a larger number of axial elements NZ must be used to attain the
same level of accuracy as that shown in table 2.

The accuracy of the algorithm has been verified in three ways. First, the present
algorithm is used to predict the oscillations of a viscous drop that is released from
an initial static deformation. Predictions made with the new algorithm are compared
with those of Basaran (1992) for the situation in which the initial drop shapes are
prescribed in terms of spherical harmonics. In contrast to the present work, Basaran
uses a spherical coordinate system with radial coordinate 
 and polar-angle ϕ. Then,
the initial deformed shape of the drop is 
 = f(ϕ), where the shape function f(ϕ) is
given by†

f(ϕ) = γ 1/3
n [1 + fnPn(cosϕ)], n = 2, 3, 4, . . . . (3.2)

Here γn is a constant scaling factor whose values are given by Basaran (1992), Pn(·)
is the nth Legendre polynomial and fn is a constant such that fn � 1 for linearized
oscillations and fn = O (1) for large-amplitude oscillations. The shape function in
cylindrical coordinates is then (r, z) = (sinϕ, cos ϕ)f(ϕ) and ϕ = tan−1(r/z).

Predictions made with the two algorithms have been compared for the cases where
n=2 with f2 = 0.9 and n = 4 with f4 = 0.5. Since Basaran (1992) uses a different mesh
configuration than the one used in this work, his meshes cannot be exactly duplicated
here; however, simulations have been performed with the new algorithm using a mesh
resolution that is comparable to his. Drop shapes have been compared at various

† The exponent of 1/3 on γn in equation (3.2) is missing in the paper of Basaran (1992).
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Figure 4. Comparison of the shapes at breakup when Oh= 10−2 and Lo = 15 predicted by
the G/FEM algorithm of this paper which is based on elliptic mesh generation (left) and the
G/FEM algorithm of Wilkes et al. (1999) (see also Wilkes 1999) which is based on the method
of spines (right).

instants in time by measuring drop shape functions at r = 0 (or ϕ = 0) and at z =0
(or ϕ = π/2). At both locations, the difference in the value of the shape function has
been found to be less than 1%.

Second, predictions made with the present algorithm have been compared to those
made with the G/FEM algorithm of Wilkes et al. (1999) in analysing the dynamics
of contracting filaments. The algorithm of Wilkes et al. (1999) uses the method of
spines and has been well-tested against experimental measurements. Figure 4 shows
a comparison of the predicted shapes at the incipience of breakup computed with
the present algorithm (left) and the algorithm of Wilkes et al. (right). The excellent
agreement between these predictions is further testimony to the accuracy of the
present algorithm. The algorithm used here and that used by Wilkes et al. (1999) are
identical in all respects with the exception of the method of domain discretization and
mesh generation that they employ. First, the elliptic mesh generation method used
in this paper, in contrast to the algorithm of Wilkes et al. (1999), does not require
that the user have a qualitative a priori knowledge of the dynamics that will occur.
Second, the new algorithm can go all the way from the onset of the motion to breakup
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Figure 5. Computed variation of hmin with τ when Oh=10−2 and Lo = 20. Also shown are
the potential flow scaling law, hmin ∼ τ 2/3, and the inertial–viscous scaling law, hmin ∼ τ .

without requiring any remeshing in all of the cases to be reported in this paper. By
contrast, the algorithm of Wilkes et al. (1999) would require remeshing, albeit only
a couple of times, to carry out the same computations. Third, the new algorithm is
both more flexible and easier to program than that of Wilkes et al. (1999). Given that
the two algorithms have virtually the same accuracy, the new algorithm is superior
to the one used by Wilkes et al. (1999).

The third and final verification of the accuracy of the new algorithm is done by
examining details of the local dynamics near the point of pinch-off. A number of
authors have carried out local analyses of the Navier–Stokes, Stokes and Laplace
equations for pinching threads (Keller & Miksis 1983; Eggers 1993; Papageorgiou
1995a ,b; Day et al. 1998; Lister & Stone 1998; Papageorgiou & Orellana 1998; Eggers
2000). While algorithms based on the BEM, which are restricted to either Stokes flows
or inviscid irrotational flows have been shown to be capable of describing accurately
the pinch-off dynamics (Chen & Steen 1997; Day et al. 1998; Lister & Stone 1998), the
only algorithms for solving the full Navier–Stokes equations which have demonstrated
to have this level of accuracy are those used by Basaran and coworkers (Notz et al.
2001; Chen et al. 2002). Making computational predictions of the local dynamics
that are mesh independent requires the use of finer discretizations than those listed
in tables 1 and 2 (cf. Chen et al. 2002). Obtaining such solutions has required the
use of a mesh with NR1 = NR2 = 4 and NZ = 2000. With these values of the mesh
parameters, the finite element discretization involves 16 016 elements, 68 081 nodes,
and 194 245 degrees of freedom. Figure 5 shows the variation of the minimum radius
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Figure 6. Variation of computed scaled drop profiles h/hmin with scaled axial coordinate
(z − zmin )/hmin when Oh=10−2 and Lo = 20 (cf. figure 5) showing that the scaled shapes tend
to the potential-flow similarity solution. With the exception of the scaled profile corresponding
to the largest value of hmin , the value of hmin for each profile shown equals approximately 0.75
times the value of hmin for the profile that has the closest larger value of hmin to it.

hmin with time to breakup τ for the case when Oh = 10−2 and Lo = 20. The calculations
show that initially hmin ∼ τ 2/3, in accordance with the potential-flow scaling theory
(Keller & Miksis 1983; Day et al. 1998). However, viscous effects eventually become
important as the minimum radius continues to decrease and becomes order Oh2, as
shown by Eggers (1993). Indeed, the results depicted in figure 5 show the transition
that takes place from the potential-flow to the inertial–viscous scaling regime, where
hmin ∼ τ . The effect of the ambient gas on the dynamics may be neglected until
hmin ∼ mOh2, where m is the ratio of the viscosity of the ambient fluid to that of the
drop (Lister & Stone 1998).

Because of the orders of magnitude disparity between local length and time scales
in the vicinity of pinch-off and corresponding global scales, interface shapes near hmin

must be self-similar. To demonstrate the collapse of the computed interface shapes
onto a similarity profile, figure 6 shows the variation of the interface thickness h scaled
by the minimum radius hmin , h/hmin , with the scaled axial coordinate (z − zmin)/hmin ,
where zmin is the axial coordinate at which h =hmin , for several values of τ when
the dynamics falls in the potential flow regime. As time t increases, or time to
breakup τ decreases, the scaled profiles h/hmin move away from the potential-flow
similarity solution shown in figure 5 as viscous effects become locally important (not
shown). Appropriately scaled computed interface profiles would eventually approach
the inertial–viscous similarity solution once hmin falls below 10−4 (Eggers 1993; Chen
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Figure 7. Time evolution of the shape of a contracting filament when Lo = 15 and Oh= 1.

et al. 2002). However, computation times become inordinately long when hmin falls
below 10−3 and therefore it becomes prohibitive to demonstrate the approach to the
inertial–viscous similarity profile for this value of Oh. Since the value of hmin for
transition from the potential-flow to the inertial–viscous regime scales as Oh2, the
smaller (larger) the value of Oh the smaller (larger) is the value of hmin to which the
calculations must be continued to observe the transition from one scaling regime to
another. Unfortunately, if Oh is made larger than 10−2, it is shown in the next section
that a point is reached beyond which a contracting filament no longer breaks and
hence it becomes impossible to observe the transition from the potential-flow to the
inertial–viscous scaling regime. However, when a liquid drips from a capillary, the
interface pinches off regardless of the value of Oh. Hence, the present algorithm has
been generalized to also analyse drop formation from a capillary. First, it has been
shown by repeating one of the calculations reported by Chen et al. (2002) for the
situation in which Oh = 1.63 × 10−1 that both the potential-flow and inertial–viscous
similarity solutions can be predicted by the new algorithm. Second, as a further test
of the new algorithm, it has been demonstrated that computational results predicted
with the algorithm used in this paper are within 0.1% of those reported by Chen
et al. (2002).

4. Results and discussion
4.1. Time evolution of shapes and breakup of contracting filaments

In order to highlight the range of dynamics observed for contracting filaments,
figures 7–10 show the evolution in time of the shapes of four filaments which all have
an initial aspect ratio of Lo = 15 but are distinguished from each other by values of
Oh that vary by three orders of magnitude between 10−3 and 1. After examining the
dynamics for this set of parameters, the results for the whole parameter space will be
presented.

For the situation in which Oh =1, shown in figure 7, the filament evolves through
a series of dog-bone shapes as it contracts and simply tends to a sphere at large
times. Throughout the entire motion, the interface location remains a single-valued
function of the axial coordinate z. When Oh = 0.1, shown in figure 8, the filament
forms bulbous ends soon after it starts to contract. Although two distinct minima in
the filament radius are apparent in this case, in contrast to the case when Oh =1,
the interface does not continue to constrict indefinitely. Thus, the filament fails to
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Figure 8. Time evolution of the shape of a contracting filament when Lo = 15 and Oh=0.1.
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Figure 9. Time evolution of the shape of a contracting filament when Lo = 15 and Oh=10−3.

pinch-off the bulbous ends that form on it at early times. Instead, the filament simply
thickens and its bulbous ends become larger. Hence, the filament undergoes a series
of oscillations with ever diminishing amplitude, roughly one period of which is shown
in figure 8. This filament too tends to a sphere at large times (not shown).

For very low values of Oh, such as Oh =10−3, shown in figure 9, the dynamics
of the filament closely resemble those of a filament of an inviscid fluid undergoing
irrotational flow (Schulkes 1996). Soon after this thread starts to contract, it forms
bulbous ends similar to the case when Oh =0.1 (cf. figure 8). However, capillary force
dominates viscous force in this case and causes the bulbous ends to pinch-off from the
filament. It is also noteworthy that the interface overturns on itself prior to breakup,
as can be seen from the panel corresponding to t = 4.797 in figure 9.

The dynamics for the case when Oh = 10−2, shown in figure 10, differ markedly
from those at both large values of Oh (e.g. figures 7 and 8) and small values of Oh
(e.g. figure 9). Initially, bulbous ends form on the contracting filament and it looks as
if they will eventually pinch off, as shown by the two panels at t = 3.22 and 4.83 in
figure 10. However, capillary forces are not large enough to overcome viscous forces
and the emptying of the thinning necks is inhibited and pinch-off of the two bulbous
ends via the endpinching mechanism is precluded in this case. Instead, the capillary
waves on the surface of the filament evolve on a time scale comparable to the time
required for the filament to contract to an aspect ratio of O (1) and thereby lead to a
peculiar shape at breakup.
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Figure 10. Time evolution of the shape of a contracting filament when Lo = 15 and
Oh= 10−2.

–4 –3 –2
log Oh

–1 0
0

5

10

15

20

25

30

Lo

35

Figure 11. Final shapes of contracting filaments as a function of Lo and Oh. Shapes shown
are not drawn to scale.

Figure 11 shows the final shapes of filaments of various values of Oh that are
released from initial deformations characterized by the value of the initial aspect
ratio Lo. For sufficiently large values of Oh, i.e. Oh = O (0.1) or larger, the filaments
do not break regardless of the value of the initial aspect ratio Lo. Such filaments
simply relax to a sphere after undergoing a series of oscillations. For sufficiently small
values of Oh, i.e. Oh = O (0.01) or smaller, contracting filaments suffer three fates that
depend on their initial deformations. Figure 11 makes plain that if Lo is sufficiently
large, the filaments undergo an endpinching mode of breakup where daughter drops
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Oh 10−3 5 × 10−3 10−2 2.5 × 10−2 5 × 10−2

Lo,c 5.5 ± 0.5 8.75 ± 3.75 12.5 ± 2.5 17.5 ± 2.5 27.5 ± 2.5

Table 3. Variation with Ohnesorge number of the critical initial aspect ratio Lo,c below
which a filament does not break.

break off from the two ends of contracting filaments. At intermediate values of Lo,
the dynamics are quite complicated and result in a variety of shapes at breakup, as
shown in figure 11. When Lo is sufficiently small, the filaments do not break but tend
to a sphere after undergoing a series of oscillations (not shown but see e.g. Basaran
1992).

Thus, there exists both (i) a critical Ohnesorge number Ohc above which a
contracting filament does not break no matter how large the initial aspect ratio and
(ii) a critical initial aspect ratio Lo,c, at any value of Oh for which filament breakup
occurs, below which a filament does not break. In his pioneering study, Schulkes (1996)
surmized that 5×10−3 � Ohc � 10−2 despite that he could not continue his calculations
to breakup. With the present algorithm, it has been found that endpinching occurs
for Oh as large as 5×10−2 provided that the initial aspect ratio Lo is sufficiently large.
Schulkes (1996) further estimated that in order to prevent the full contraction before
breakup of a filament, an initial aspect ratio of Lo ≡ Lo,c � 8 is required. Table 3 shows
that the critical value of the initial aspect ratio for breakup Lo,c strongly depends on
the value of Oh: whereas any filament of initial aspect ratio Lo � 5.5 ± 0.5 will break
when Oh = 10−3, Lo � 27.5 ± 2.5 for breakup to occur when Oh = 5 × 10−2.

Calculations also show that for Oh � 10−2, a limiting value of the initial aspect ratio
exists above which further increases in the value of Lo insignificantly affect the time
to breakup tb. For example, when Oh = 5 × 10−3, whereas tb = 7.4 when Lo = 12.5,
tb = 9.8 when Lo = 15 but tb = 10.4 when Lo = 17.5 as well as when Lo = 30.

In their recent study of filaments formed during the pinch-off of drops from a
tube, Henderson et al. (2000) report an exact solution of the Navier–Stokes equations
for a cylindrical filament undergoing uniform, axial extension or contraction with or
without surface tension, with or without viscosity, and in the presence or absence of
gravity. From their analytic solution, they obtain a simple expression that the filament
thickness varies with time as h(t) = K/

√
T − t , where K and T are constants. Based on

their experimental observations, these authors demonstrate that their solution holds
well for the thinning neck of a drop in drop formation prior to pinch-off in situations
where the thread thickness is nearly uniform in the axial direction. However, these
authors have also noted that the analytical solution does not appear to hold for
the contracting satellites that are formed once the thread separates from the primary
drop and the liquid attached to the tube. The results presented here illustrate that
even though the filament thickness is nearly uniform in the axial direction during the
initial stages of contraction, the filament does not contract uniformly for all times
and so the results presented here also do not agree well with the analytic solution of
Henderson et al. (2000). This difference in behaviour can be understood by examining
the forces driving the contraction of filaments.

At t =0, the value of twice the dimensionless mean curvature along the cylindrical
body of the filament is − 2H = 1 whereas that along the two hemispherical ends of
the filament is − 2H = 2. Thus, in accord with the normal stress boundary condition
(2.3a) at the free surface, a pressure gradient exists initially near the two ends of



242 P. K. Notz and O. A. Basaran

10

(a)

z

8

6

4

2

10

8

6

4

2

0 1
r r

2 0 1 2

(b)(a) (b)

Figure 12. Streamlines in contracting filaments of Lo = 10: (a) Oh= 0.1 at t =1.639 and
(b) Oh= 10−2 at t = 1.318. For the streamlines shown, values of the stream function range
from −0.6 to 0.05 in increments of 0.025.

the filament. The pressure gradient drives fluid from the tips toward the centre of
the filament. As the accelerating fluid from the tips collides with the quiescent fluid
nearer the centre of the filament, the fluid is forced to flow radially outward causing
the ends of the filament to bulb up. Eventually, an internal shear layer develops
causing the fluid nearer the centre of the filament to also flow radially outward. This
is demonstrated in figure 12 where the instantaneous streamlines are plotted in two
filaments with the same initial aspect ratio of Lo = 10 but with different Ohnesorge
numbers of Oh =0.1 and 10−2. Hence, the contraction of the filament initially occurs
mainly at its ends while the fluid in the larger central region of the filament is
essentially quiescent and does not participate in this motion. Thus, the central region
in the filament initially maintains a thickness that is nearly uniform in both space and
time. When the central region of the filament eventually begins to thicken, it does so,
however, with a non-uniform thickness.
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4.2. Comparisons with predictions made with the slender-jet approximation

Several researchers (Brenner et al. 1997; Ambravaneswaran et al. 2000, 2002) have
recently demonstrated that predictions based on the slender-jet approximation
(Bechtel, Cao & Forest 1992; Eggers 1993; Eggers & Dupont 1994; Papageorgiou
1995b) can be both efficient and accurate in predicting drop dynamics. However,
assumptions inherent in the slender-jet approximation may preclude its use in some
situations. Most obvious is the assumption that the interface location is a single-valued
function of the axial coordinate, namely r = h(z, t). However, it is unclear at the
present time when the leading-order solution based on the slender-jet approximation
may be sufficient to describe the dynamics of contracting filaments with reasonable
accuracy. In this section, the formulation of the one-dimensional slender-jet equation
is briefly summarized and comparisons between predictions based on the slender-jet
approximation and those based on the full two-dimensional system of equations are
made.

In the slender-jet approximation, the interface location is assumed to be given by
a single-valued function r = h(z, t), and the axial velocity and pressure are expanded
in a Taylor series in the radial coordinate

v(r, z, t) = v0(z, t) + v2(z, t)r
2 + · · ·, (4.1a)

p(r, z, t) = p0(z, t) + p2(z, t)r
2 + · · ·. (4.1b)

In (4.1), vn(z, t) and pn(z, t), where n= 0, 2, . . . , are the unknown functions that are
to be determined. In order to satisfy continuity (2.1b), the radial velocity must have
the form

u(r, z, t) = − r

2

∂v0

∂z
+ · · ·. (4.2)

The expansions (4.1) and (4.2) are substituted into the momentum equations (2.1) and
the boundary conditions (2.3) at the free surface are used to simplify the resulting
system of equations. The leading-order asymptotic equations that result are (cf. Eggers
1993)

∂v0

∂t
= −v0

∂v0

∂z
− ∂2H

∂z
+ 3Oh

1

h2

∂

∂z

(
h2 ∂v0

∂z

)
, (4.3a)

∂h

∂t
= −v0

∂h

∂z
− 1

2
h

∂v0

∂z
, (4.3b)

2H =
1

h[1 + (∂h/∂z)2]1/2
−

∂2h
∂z2

[1 + (∂h/∂z)2]3/2
. (4.3c)

Although it is not strictly correct to retain the expression for the full curvature in
(4.3c), previous studies have shown that doing so greatly increases the accuracy of one-
dimensional analyses (Eggers & Dupont 1994; Brenner et al. 1997; Ambravaneswaran
et al. 2002).

Figure 13 compares predictions of contracting filaments made using the one-
dimensional equations with ones made using the full two-dimensional equations for
Lo = 15 when Oh = 1, 10−2 and 10−3. When Oh =1, the filament does not break and
so the predictions made with the two methods are compared at an intermediate
time t = 8 (cf. figure 7). When Oh = 10−3, the interface of the filament as predicted
by the two-dimensional algorithm overturns shortly before breakup and so the one-
dimensional predictions depart slightly from their two-dimensional counterparts near
the points of pinch-off.
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Figure 13. Comparison of filament shapes predicted by the two-dimensional G/FEM
algorithm of this paper (2D) and those predicted by slender-jet analysis using the
one-dimensional G/FEM algorithm of Ambravaneswaran (2000) (see also Ambravaneswaran
et al. 2002) (1D). In all three cases, the filaments have the same initial aspect ratio of Lo = 15.

While figure 13 makes clear that the one-dimensional predictions agree quite well
with their two-dimensional counterparts for large and small values of Oh, the one-
dimensional predictions differ significantly from the two-dimensional predictions at
intermediate values of Oh. Interestingly, the one-dimensional predictions begin to
deviate from the two-dimensional predictions at the intermediate value of Oh long
before the interface becomes a multivalued function of the axial coordinate. Clearly,
the leading-order equations (4.3) do not accurately describe the dynamics in this
region of the parameter space. One way to understand why the one-dimensional
slender-jet approximation fails at intermediate values of Oh is to investigate the
vorticity w = ∇ × v in the contracting filament.

4.3. Vorticity dynamics

The goal behind examining the vorticity dynamics is to investigate the competition
between the generation of vorticity due to the motion of the curved free surface
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and the dissipation of vorticity due to viscous effects in a contracting filament. The
well-known vorticity equation is obtained by computing the curl of the momentum
equation (2.1a) (Panton 1996):

Dw

Dt
= w · ∇v + Oh∇2w. (4.4)

The first term on the right-hand side accounts for vorticity generation due to stretching
of vortex lines and the second term there represents vorticity diffusion.

In addition to vorticity, it is also useful here to examine the enstrophy, ω = 1
2
w · w,

which is one half the square of the magnitude of the vorticity. Contracting (4.4) with
the vorticity leads to the enstrophy conservation equation. Using the vector identity
1
2
∇2w2 = w · ∇2w + ∇w : ∇w, the enstrophy equation becomes (Panton 1996)

Dω

Dt
= w · D · w + Oh∇2ω − OhΦw (4.5)

where D = 1
2
[∇v + (∇v)T ] is the rate of deformation tensor and Φw = ∇w : (∇w)T � 0 is

the vorticity dissipation function. From equations (4.4) and (4.5), it is clear that both
the diffusion and the dissipation of vorticity throughout the domain are proportional
to Oh.

Integration of (4.4) over a volume of fluid V (t) bounded by a free surface Sf (t)
leads to the macroscopic vorticity balance

D

Dt

∫
V (t)

w dV =

∫
V (t)

w · ∇v dV + 2Oh

∫
Sf (t)

eθ n · ∇
(

∂vn

∂s
+ κsvs

)
dS. (4.6)

In (4.6), V , S and s stand for volume, surface area and arc length, respectively, eθ

is a unit vector in the azimuthal direction, vn and vs are the normal and tangential
components of the fluid velocity along the free surface and κs is the principal curvature
of the free surface in the plane of flow. What is new and important for the situation
under study is the surface integral in (4.6). It represents the generation of vorticity
at the free surface which is, first of all, proportional to Oh. The first term in the
surface integral represents vorticity generation due to the shear flow that is directed
perpendicular to the free surface. The second term in the surface integral represents
the vorticity generation due to the normal gradient of the flow that is directed along
the curved boundary of the filament–ambient fluid interface.

For small values of Oh, there is very little generation of vorticity at the free surface.
Furthermore, any vorticity generated there takes a long time to diffuse into the
interior of the domain. Thus, for small values of Oh the flow in the filament remains
nearly irrotational for all times. For large values of Oh, the vorticity generated at
the free surface rapidly diffuses throughout the domain where it dissipates quickly.
Thus, for large values of Oh, the flow in the filament appears nearly irrotational. For
intermediate values of Oh, however, vorticity generation is sufficiently large and the
dissipation of vorticity is sufficiently small that the velocity field contains a significant
rotational component. These points are illustrated in figure 14 where vorticity contours
are plotted for three filaments of Lo = 15 when Oh = 1, 10−2 and 10−3. Because the
majority of the vorticity is generated near the location where the filament’s radius
is smallest due to the high curvature and large velocity gradients there, only that
portion of the filament is shown for clarity in figure 14.
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Figure 14. Vorticity fields in contracting filaments of Lo = 15: (a) Oh= 1 at t = 4.283, (b) Oh=
10−2 at t = 3.992, and (c) Oh= 10−3 at t = 2.847. Values of vorticity shown in (a) apply in all
three situations.

For an axisymmetric flow, the vorticity is purely in the azimuthal direction and
is given by wθ = ∂u/∂z − ∂v/∂r . This vorticity in the one-dimensional slender-jet
approximation is given by

wθ = − r

2

∂2v0

∂z2
− 2rv2 + · · ·. (4.7)

Equation (4.7) makes plain that the vorticity is an O (r) quantity in the slender-jet
approximation. Thus, for the one-dimensional approximation to hold, the vorticity
needs to be small throughout the domain. Therefore, the results depicted in figure 14
and equation (4.7) make clear why the one-dimensional approximation fares poorly
at intermediate values of Oh.

4.4. Velocity and pressure fields within contracting filaments

Given the results of the previous two subsections and certain findings reported
by Schulkes (1996), it is worthwhile to examine velocity and pressure fields within
contracting filaments. Here these fields are examined when Oh =0.1, 0.001, and 0.01
for filaments with initial aspect ratios Lo = 15. The situation for which Oh =1 is not
repeated here since Schulkes’ (1996) algorithm was able to capture the entire dynamics
as the initially highly elongated filament contracted to a sphere without breaking for
this value of Oh (cf. figure 7). Schulkes (1996) showed that when Oh = 1, all the
velocity vectors for r > 0 pointed in the same direction as the filament contracted to
a sphere.

Figures 15–17 show at several instants in time the shapes of filaments and the
variation with the axial coordinate of the axial velocities and pressures along the
centrelines of the filaments, va ≡ v(r = 0, z, t) and pa ≡ p(r = 0, z, t), respectively, for
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Figure 16. As figure 15 but Oh= 0.001 and (a) t = 0.345, (b) t = 1.339, (c) t = 3.385, and
(d) t = 4.603.

these three values of Oh. A one-dimensional slender-jet algorithm would also provide
information akin to that provided by figures 15–17 since at a given value of the axial
coordinate, neither the axial velocity nor the pressure vary with the radial coordinate
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in the slender-jet approximation (cf. § 4.2). Figures 18–20 show at the same instants
in time the velocity and pressure fields throughout these filaments. These figures
show that in contrast to the situation when Oh = 1, the velocity fields exhibit several
stagnation points along the axis of symmetry when Oh � 0.01, as has already been
noted by Schulkes (1996). Moreover, several minima in pressure can be observed in
each of these figures, each corresponding to a local minimum in filament radius. For
Oh = 0.1, Schulkes was able to continue his calculations until the point in time when
the recoiling filament’s radius in the equatorial plane of symmetry z =0 started to
increase in time. For Oh = 0.01, Schulkes was not able to continue his calculations
beyond the instant in time when the filament radius was still larger than 0.8 and he
does not report results for Oh = 0.001.

While the situation in which Oh = 0.01 is qualitatively similar to those in which
Oh = 0.1 and 0.001, two features distinguish the former situation from the latter
two. When Oh = 0.01, a zone of recirculation forms inside the recoiling bulbous tip
of the filament for values of the axial coordinate just exceeding that at which the
filament radius is a minimum, as shown in figure 20. Such a recirculating flow, where
the axial velocity takes on both positive and negative values at a given value of
the axial coordiate, is a direct manifestation of the importance of vorticity in a
recoiling filament at this value of Oh and cannot be predicted by the one-dimensional
slender-jet approximation. The demonstration in the previous section of the presence
of substantial amounts of vorticity within a filament and that in this section of the
existence of a recirculating eddy within the same filament make plain why the one-
dimensional slender-jet approximation fails to describe accurately the dynamics when
Oh = 0.01. Figures 18–20 also show that except near locations where the filament is
pinching, the computed contour lines of pressure are nearly horizontal and agree well
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Figure 18. Evolution in time of the velocity and pressure fields within a contracting filament
when Oh= 0.1 and Lo = 15. The arrows represent the fluid velocity at a given point in the
filament and each velocity vector shown belongs to its base point. The curves shown are
contour lines of pressure. (a) t = 4 × 10−3, (b) t = 3.457, (c) t =8.086, and (d) t =11.515.

with the built-in assumption of the one-dimensional slender-jet approximation that
the pressure is independent of the radial coordinate when Oh =0.1 and 0.001.

4.5. Time evolution of the aspect ratio and tip velocity of contracting filaments

Figure 21 shows the variation with time t of 1 − L/Lo, where L is the instantaneous
half-length of a contracting filament, for several Ohnesorge numbers. Whereas
figure 21(a) depicts the time evolution of 1 − L/Lo over the entire range of times
over which the dynamics take place, figure 21(b) highlights the dynamics during the
early times of recoiling for the two high-viscosity filaments (Oh = 1 and 0.1) and until
they break for the two low-viscosity filaments (Oh =0.01 and 0.001). These figures
show that since the inception of the motion, the motion of the tip of a filament with
Oh =0.001 virtually follows that of a filament with Oh = 0.01 until the filament with
Oh =0.001 breaks.

Figure 22 shows how the velocity of the tip of a filament vtip ≡ dL/dt =
v(r = 0, z = L(t), t) varies with time t for the same four filaments of figure 21. Figure 22
makes plain that in each case, the filament tip initially accelerates upon the onset
of the dynamics but then decelerates after the elapse of a certain amount of time
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Figure 19. As figure 18 but when Oh= 0.001 and (a) t = 0.345, (b) t = 1.339, (c) t = 3.385,
and (d) t = 4.603.

that increases with increasing Oh. The filament when Oh = 0.001 breaks after its tip
starts to decelerate, as shown in figure 22. By contrast, the filament when Oh = 0.01
starts a second period of acceleration but ultimately breaks once its tip has slowed
down to a speed approximately equal to the value it had when its tip had begun to
accelerate again. Figures 21 and 22 further depict that the filaments when Oh = 0.1
and 1 undergo underdamped and overdamped oscillations, as already discussed in
§ 4.1.

It is also worthwhile to compare the computed predictions reported in figures 21
and 22 to the calculations reported by Schulkes (1996) and the works of Keller et al.
(1995), Ting & Keller (1990) and Keller (1983), who showed that the tip of an inviscid
filament of uniform radius can contract at a constant velocity. The preliminary results
of Schulkes (1996) and the results of figures 21 and 22 clearly show that for low-Oh
filaments, there does not exist a finite period of time during which the tip of a
contracting filament moves at a constant velocity.

5. Conclusions
A powerful G/FEM algorithm has been developed which has made it possible to

study the dynamics of contracting filaments all the way to breakup at finite Ohnesorge
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Figure 20. As figure 18 but when Oh= 0.01 and (a) t = 1.952, (b) t =6.107, (c) t = 8.910,
and (d) t = 11.005.

number Oh or Reynolds number Re ≡ Oh−1 (cf. Schulkes 1996). It is shown that when
Oh � O (0.1), the filaments ultimately contract to their equilibrium spherical shapes
without breaking into multiple droplets regardless of their initial aspect ratio. When
Oh � O (0.1), filaments with sufficiently large initial aspect ratios pinch-off daughter
drops from their ends through the so-called endpinching mechanism. For smaller
values of the initial aspect ratio Lo, filaments undergo a series of complex oscillations
which ultimately lead to breakup. For a yet smaller Lo, filaments evolve to their
equilibrium spherical shapes after undergoing a sequence of complex oscillations.

The predictions of the dynamics of contracting filaments made with the G/FEM
algorithm are compared to those made with a one-dimensional model based on the
slender-jet approximation. The two predictions are in good agreement for both large
and small Oh with the limitation that the one-dimensional models are inherently
incapable of predicting dynamics which involve interface shapes that are multivalued
functions of the axial coordinate or exhibit interface overturning. However, at
intermediate values of Oh, significant disagreement exists between the two models.
This discrepancy is explained by demonstrating that (a) the one-dimensional models
are only accurate when the magnitude of the vorticity is small, i.e. wθ =O (r), and
(b) the vorticity of the fluid is maximized at intermediate values of Oh. Hence, at
intermediate values of Oh, the velocity has an appreciable rotational component
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Figure 21. Variation of 1 − L/Lo with time t for filaments when Oh=1 (solid line), 0.1
(chain-dashed line), 0.01 (dashed line), and 0.001 (dotted line). The initial aspect ratio Lo = 15
in all cases. (a) For all time and (b) for early times.

which the leading-order solution to the slender-jet equations cannot capture. This
fact is further demonstrated by directly examining velocity fields and showing that
recirculating flows do indeed exist within contracting filaments at intermediate values
of Oh.

The computed prediction of the details of the pinch-off process has also been shown
to agree with existing scaling theories of interface rupture. For sufficiently small values
of Oh, a pinching interface initially evolves in time as if it enclosed an inviscid fluid.
However, once the minimum radius becomes O(Oh2), the interface thereafter thins in
accordance with the inertial-viscous scaling law.
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